AI 推理的最佳选择 - vLLM

原文链接:The Best Choice for AI Inference -> vLLM 注意:为避免广告嫌疑,本文中移除了特定产品和品牌的商业宣传内容,仅保留技术特性及企业级产品功能描述,相关内容请以原文为准。 随着各组织从大语言模型(LLM)的试验阶段迈向生产部署,选择哪种推理平台就成了一项关键的业务决策。这个选择不仅影响性能,也影响灵活性、成本优化,以及应对快速变化业务需求的能力。 对于技术人员和方案架构师在评估 LLM 推理平台时,应该重点考虑以下三大因素: 架构灵活性:能否在不同硬件加速器和混合云环境间部署,而不会被某一家厂商锁定。 运行可扩展性:支持从单 GPU 部署扩展到分布式多节点的高级部署模式。 生态开放性:对最广泛的模型与内核支持,以及能与各种企业软件生态系统整合。 vLLM 在开源基础、先进内存管理能力,以及即将推出的分布式部署蓝图方面,独特地满足这些需求。与专有或硬件专用方案不同,这套组合提供了在成本、性能和运营需求上随时优化调整的自由。 本文将深入分析为何 vLLM 在其技术架构与能力上(尤其是其 KV-Cache 管理、并行策略,以及未来的 llm-d 分布式能力)提供了最可持续的生产级 LLM 部署路径。 开源优势 社区驱动的大规模创新 LLM 推理的发展,根本上受到开源创新的推动。过去一年半以来 vLLM V1: A Major Upgrade to vLLM’s Core Architecture | vLLM 博客(英文版),vLLM 在支持多样模型、功能和硬件后端方面取得显著成绩,从伯克利大学的研究项目成长为开源 AI 生态中的事实标准之一 vLLM 2024 Retrospective and 2025 Vision | vLLM 博客(英文版)。 vLLM 社区发展参考链接 vLLM 现在隶属于 PyTorch 基金会托管项目(GitHub — vllm-project/vllm: A high-throughput and memory-efficient inference and serving engine for LLMs),这保证了其长远的可持续性和治理机制。...

十月 15, 2025 · 7 分钟

玩转大语言模型:基于 vLLM 框架的大模型推理优化实现参数 / 数据(P/D)分离

大模型在推理部署时,往往存在显存瓶颈: 模型参数(Parameters, P)动辄上百 GB,需要长期驻留显存。 输入/输出数据(Data, D)则随请求动态变化,但往往和参数耦合在同一设备上,导致显存占用不均衡,扩展性受限。 为了解决这一问题,可以借助 vLLM 框架实现参数 / 数据(P/D)分离,提升推理系统的灵活性和吞吐。 大模型推理的资源瓶颈 以一个 70B 规模的 Transformer 模型为例: 参数权重(FP16 存储)约需 140GB 显存; 每次请求输入的序列数据、KV Cache 会消耗额外显存,并随 batch size 增长而急剧膨胀。 如果不加区分地将 P 与 D 放在同一块 GPU: 参数长期驻留,挤压了用于动态数据的显存; 多实例并发时,数据显存不足,限制了吞吐。 因此,在分布式推理系统中,业界逐渐采用 参数与数据分离(P/D Separation) 的架构思路。 vLLM 简介 vLLM 是一个高性能的大模型推理引擎,核心优势包括: PagedAttention:高效管理 KV Cache,支持大批量并发; 高吞吐率:相较于 Hugging Face Transformers 推理,吞吐提升数倍; 灵活的分布式支持:可结合 DeepSpeed、Megatron 等方案,支持参数/数据分布式存储与调度。 vLLM 的模块化架构,使其天然适合实现 P/D 分离。 P/D 分离的实现思路 在 vLLM 中,推理流程大致分为两个部分: 参数侧(P) 模型权重加载与存放; 可通过 ZeRO-3 / Tensor Parallel 等策略将参数分布在多 GPU 节点上; 参数在整个推理生命周期中保持常驻,不随请求波动。 数据侧(D)...

九月 29, 2025 · 2 分钟

玩转大语言模型:微软最新开源长语音大模型 VibeVoice 入门

什么是 VibeVoice? VibeVoice 是 Microsoft Research 发布的一套面向长篇、多说话人、对话式语音合成的研究框架,目标场景例如整集播客、有声剧或访谈:能在单次生成中维持说话人一致性并处理自然的换手(turn-taking)。模型家族包含多个规模(例如 1.5B、7B 等),并在 Hugging Face 上以 microsoft/VibeVoice-1.5B 形式开放(模型卡、模型文件、model card 中有安装/使用与责任使用说明)。 它解决了传统 TTS(Text-To-Speech)系统的一些痛点,比如: 难以维持长时间对话的语音一致性(speaker consistency); 多说话人的切换自然性(turn-taking)差; 效率低 — 长文本 + 多说话人时,资源消耗大。 核心创新与架构 VibeVoice 有几个比较新的或者关键的技术设计: 组件 功能 / 目的 Continuous Speech Tokenizers(声学 + 语义两种) 用来把音频压缩成低帧率(7.5 Hz)表示,同时保留语义与音质信息。声学 token 与语义 token 分别负责声音细节和内容表达。 LLM 基础模型(Large Language Model) 在该版本里用的是 Qwen2.5-1.5B,用来处理文本、说话人信息以及上下文对话流。 Diffusion Head 对声学 VAE 的特征进行预测,是生成高保真声音细节的模块。这个模块较轻 (大致 4 层结构),在推理阶段使用 diffusion 的技术(包括去噪等)。 上下文长度 & 多说话人 支持高达 90 分钟语音生成,最多 4 个说话人。 架构图如下: 优点和局限 优点 长篇幅对话能力 — 能生成近 90 分钟的连续对话,并维持说话人一致性。 多说话人支持 — 最多支持 4 个不同说话人的切换,且对话流程自然。 压缩效率高 — 用 7....

九月 18, 2025 · 2 分钟